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Inverse Problems

Statistical modeling: Parameters 𝜽 Data 𝒚

Epidemiology: Virus attributes Infection curve (time series)

Image processing: Crisp image Blurry image

Psychology: Cognitive parameters Reaction times

Unknowns Observables
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Amortized Bayesian inference
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Approximation and inference are decoupled. Pooling of resources.
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Stage 1: Training (Approximation)
potentially expensive
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Stage 2: Inference
amortized over many data sets 𝑦!
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Potential of Amortized Bayesian Inference

(1) Many model re-fits
• Cross-validation
• Many data sets
• Sensitivity analyses
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Hamiltonian Monte Carlo (HMC)
5.66s for 10k posterior samples
non-amortized

Neural Posterior Estimation (NPE)
23s training, 0.07s for 10k posterior samples
amortized

(2) Real-time inference
• Neurological monitoring
• Adaptive experimental design
• Disease surveillance



Isn’t amortized inference wasteful?  No!
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Amortized methods perform on-par with non-amortized counterparts!

amortized amortized



Jointly amortized learning: Posterior + Likelihood
• Jointly amortized neural approximation (JANA; Radev et al., 2023)
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Problems of vanilla Amortized Bayesian Inference

• Neural networks have a bad user experience

• Model misspecification invalidates training

• Normalizing flows restrict network architecture

• Simulation-based training requires lots of training data
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Self-consistency criterion

⟹
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Self-consistency loss

• Idea: Violations of self-consistency property as loss function

• Integration into standard neural posterior estimation loss
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Experiment 1: Gaussian Mixture
Posterior estimation, varying training budget N

• Model:
• Results: Better posterior samples compared to vanilla NPE
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Experiment 2: Two Moons
Posterior and likelihood estimation, varying training budget N
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(1) Better posterior samples (2) Sharper log marginal likelihood
(MMD, lower is better)

Width of 95% CI of the LML for a data set, mean ± SE

→



Experiment 3: Hes1 Expression Model

Results compared to NPLE baseline: 
• Better simulation-based calibration (SBC; Talts et al., 2018)
• Similar posterior predictive results

Posterior and likelihood estimation, N = 512 training budget
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Summary and Outlook
Self-consistency losses reward consistent marginal likelihood estimation

Gains:
• Improved neural posterior estimation (SC-NPE)
• Improved neural likelihood estimation (SC-NPLE)
• Improved neural marginal likelihood estimation (SC-NPLE)
• Direct extension to popular loss functions in amortized inference

Limitations:
• More expensive upfront training → later break-even with non-amortized
• More hyperparameters → develop automated choices
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